
UCRL-CONF-204216

Software Quality Assurance for
Nuclear Safety Systems

D. R. Sparkman, R. Lagdon

May 18, 2004

International System Safety Conference
Providence, RI, United States
August 2, 2004 through August 6, 2004

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

UCRL-CONF-204216
Software Quality Assurance for Nuclear Safety Systems

Debra Sparkman, Lawrence Livermore National Laboratory
Center for Application Development and Software Engineering

Richard Lagdon, US Department of Energy
Office of Environment, Safety and Health

Keywords: software quality assurance, nuclear safety, safety software

Abstract

The US Department of Energy has undertaken an initiative to improve the quality of software used to design and
operate their nuclear facilities across the United States. One aspect of this initiative is to revise or create new
directives and guides associated with quality practices for the safety software in its nuclear facilities. Safety software
includes the safety structures, systems, and components software and firmware, support software and design and
analysis software used to ensure the safety of the facility.

DOE nuclear facilities are unique when compared to commercial nuclear or other industrial activities in terms of the
types and quantities of hazards that must be controlled to protect workers, public and the environment. Because of
these differences, DOE must develop an approach to software quality assurance that ensures appropriate risk
mitigation by developing a framework of requirements that accomplishes the following goals:

• Ensures the software processes developed to address nuclear safety in design, operation, construction and
maintenance of its facilities are safe

• Considers the larger system that uses the software and its impacts
• Ensures that the software failures do not create unsafe conditions

Software designers for nuclear systems and processes must reduce risks in software applications by incorporating
processes that recognize, detect, and mitigate software failure in safety related systems. It must also ensure that fail
safe modes and component testing are incorporated into software design. For nuclear facilities, the consideration of
risk is not necessarily sufficient to ensure safety. Systematic evaluation, independent verification and system safety
analysis must be considered for software design, implementation, and operation.

The software industry primarily uses risk analysis to determine the appropriate level of rigor applied to software
practices. This risk-based approach distinguishes safety-critical software and applies the highest level of rigor for
those systems. DOE has further defined a risk approach to nuclear safety system software consistent with the
analyses required for operation of nuclear facilities. This requires the grading of software in terms of safety class and
safety significant structures, systems and components (SSCs). Safety-class SSCs are related to public safety where as
safety-significant SSCs are identified for specific aspects of defense-in-depth and worker safety.

Industry standards do not directly categorize nuclear safety software and DOE sites are not consistent in their
approach to nuclear safety software quality assurance. DOE is establishing a more detailed graded approach for
software associated with safety class and safety significant systems. This paper presents the process and results that
DOE utilized to develop a detailed classification scheme for nuclear safety software.

Introduction

The intent of this document is to provide a baseline for establishing the framework for the application of software
quality assurance to nuclear facilities within the DOE complex. DOE is using this baseline information to assist in
the development of safety software quality assurance requirements and guidance for nuclear facility applications.
The new requirements are written as performance/outcome oriented statements and supported by a guide providing

more detail on how to apply the requirements. This document intends to lay a foundation for common understanding,
and present concepts and ideas on:

• The types of safety software in common use
• The application of safety software to DOE activities and facilities
• Classification and grading
• The activities, processes and practices applied to safety software to assure quality

This information is based upon accepted industry practices in software engineering and software quality engineering,
industry standards, and preliminary industry examples. Information from federal agencies (e.g., NASA, DoD, DOE,
FAA), standards organizations (e.g., ISO, ASME, IEEE), and DOE facilities has been reviewed and folded into the
concepts and approaches in this document.

This document contains well-known concepts and information. The purpose is to establish basic understanding and
common terminology derived from DOE programs, national standards, and DOE requirements to provide a basis for
developing SQA requirements. This document discusses these concepts and lays the foundation for the approaches
that are presented. Tables identifying the types of software to be graded are included and provide the framework for
identifying the appropriate standards in the guidance documents for approaches to SQA.

Nuclear Safety Requirements

Nuclear safety requirements are defined in 10 CFR 830, “Nuclear Safety Management.” This rule governs the
conduct of operations that may affect the safety of DOE nuclear facilities. In the past, DOE generally required
software quality assurance, however, it is now seeking to define those requirements exclusively for the nuclear
facilities it operates to improve its safety posture and minimize the risks of operation.

DOE nuclear facilities are categorized in terms of safety according to the nuclear material contained in the facility.
Hazard category 1 facilities represent significant offsite and onsite risks to the public and workers, respectively.
Hazard category 2 nuclear facilities represent significant onsite risks to the workers and may represent an offsite risk.
Hazard category 3 nuclear facilities represent only localized risks to the facility. Risks are qualitatively or
quantitatively derived. In terms of nuclear safety analysis, the hazard category defines the degree to which assurances
of safety are required.

Nuclear safety system components are procured and installed with a high degree of quality that is specified
throughout the design, construction, testing, and operation. Once installed, nuclear systems are periodically tested to
ensure that the system continues to meet its safety functions. Periodic testing may consist of entire system tests or
individual component tests. Frequency of testing is based on operational history and failure data and the relative
importance to safety of the component or system.

Software utilized in nuclear facilities, regardless of the application, should be treated with the same quality assurance
pedigree as the hardware. For nuclear systems, software is one part of the entire system. Failure of the software
should be considered in conjunction with the system analysis that is conducted to ensure that the operation remains
within safety limits.

Safety analyses for nuclear safety software in DOE facilities should include:
• What makes the system, including the software, safe.
• How the software system interfaces with the overall system and understand its impacts.
• Identify single failure points and their impact on system operation.

Software utilized in nuclear facilities that can affect its safety should follow accepted industry quality assurance
practices for existing nuclear facilities. The approach applied for software needs to address independent verification
of analysis to ensure that installed systems can perform their safety functions. This includes application of the

unreviewed safety question process utilized by nuclear facilities to ensure that changes, tests, or experiments to the
facility, including software, do not decrease the facilities safety margin.

System Classification and Software Grading Levels

There are three basic classifications for systems that are derived from DOE nuclear safety management rule 10 CFR
830: safety class, safety significant and other systems. Grading levels are used to label the software that monitors
and controls these systems, that provide safety management or administrative controls, and that are used in analysis
or design decisions.

The number of software grading levels and the mapping between the software and its associated system classification
still need to be finalized. Initial thoughts are to have two software grading levels (A and B, for example). One
organization within DOE has five levels (A-E) to classify all software including non-safety related software; others
use two or four levels, depending on the applications, appropriate for their facilities.

Software directly associated with a safety class or safety significant system should be at the highest software grading
level. It is difficult to distinguish significant differences in QA practices for software associated with safety class
systems from that of software associated with safety significant systems. Sample descriptions for two software
classification levels are:

Level A: This grading level includes high safety consequence software applications that meet one or more of the
following criteria:

1. Software applications where failure could have an adverse effect on nuclear safety systems (i.e., Safety
Class or Safety Significant SSCs), toxic material, or chemical hazard protection systems that are credited in
the facility safety analysis for protecting against or limiting exposure to the general public and workers
below regulatory or evaluation guidelines.

2. Software applications where failure could result in non-conservative safety analysis, misclassification of
SSCs, or inappropriate safety related decisions.

Level B: This grading level includes low safety consequence software applications that meet one or more of the
following criteria:

1. Software applications whose failure would cause a reduction in the degree of safety or defense-in-depth.

2. Software application that supports safety management decisions regarding a facility or system operating
activity (e.g., software whose failure would not impact performance of a safety function, but could result in:
missed surveillances; confusion regarding system status; or noncompliance with nuclear safety regulatory
laws, environmental permits or regulations, and/or commitments to compliance).

Software Applications

There are five basic applications for the safety software in DOE facilities/activities: Instrumentation and Control
(I&C) process monitoring and control applications, networking and interface applications, safety management and
administrative control applications, safety analysis applications, and design and analysis applications.

Figure 1. Safety Software Applications

Instrument and Control Process Monitoring and Control Applications: These applications are the software and
firmware to control and monitor equipment and components such as valves and switches, including all
programmable logic controllers within the safety-class and safety significant structures, systems, and components.

Network and Interface Applications: Software in these applications includes the software and firmware within the
network components that interface with structures, systems and components, or other components that perform safety
functions.

Safety Management and Administrative Control Applications: Software in these applications includes database
applications used in the safety management and administrative controls associated with structures, systems and
components, or within the facility. Examples include software used for inventory and material tracking and drum or
container hazard assessment calculations.

Safety Analysis Applications: Software in these applications is used for consequence analysis of potential accidents
and the evaluation of design basis events.

Design and Analysis Applications: Software in these applications is used for the design and analysis of the
structures, systems and components, or the facility. Examples include structural, electrical, mechanical, ventilation,
criticality safety, and fire protection design and analysis applications.

Sources and Types of Software

Five types of software are commonly used in DOE applications: custom, configurable, commercial-off-the-shelf,
utility calculations, and commercial design and analysis tools. Table 1 maps the five software types to the five
applications for the software. The software is primarily from three sources: DOE or their contractors, procured as a
service or package, or DOE’s Safety Software Central Registry.

The DOE Safety Software Central Registry is a virtual repository of software applications used in the design and
analysis of DOE’s nuclear facilities. Currently this repository contains six software application codes to calculate and
analyze fire source term, leakpath factor, chemical release/dispersion and consequence, and radiological dispersion
and consequence. The quality assurance attributes for these codes have been assessed and determined to have an
acceptable pedigree for DOE’s nuclear facilities.

Safety Software
Applications

Safety System Software

• Instrument and Control Process Monitoring
and Control

• Network and Interface
• Safety Management & Administrative Control

Safety Design & Analysis Software

• Safety Analysis
• Design and Analysis

Application

Type

Instrument &
Control Process
Monitoring &

Control

Network
and

Interface

Safety
Mgmt

&
Admin
Control

Safety
Analysis

Design and
Analysis

Custom X X X X X
Configurable X
COTS X X X X X
Utility Calculation X X
Commercial
Design & Analysis
Tools

X X

Table 1. Software Types by Applications

Custom: Custom developed software is built specifically for a DOE application. It may be developed by DOE, one
of its contractors, or contracted with a third party software company through procurement. This software may be
used at more than one facility or DOE site. Examples of this type of software could include material inventory and
tracking database applications, accident consequence applications, and control system applications. Some software
codes in DOE’s Safety Software Central Registry may be custom developed.

Configurable: Configurable software is a commercially available software or firmware that allows the user to modify
the structure and function of the software in a limited way to suit the user's needs. An example of this is the software
associated with programmable logic controllers.

Commercial-off-the-shelf (COTS): (COTS software is generally supplied through basic procurements. The COTS
software includes the operating systems, database management systems, compilers, software development tools, as
well as commercial calculational software and spreadsheet tools (e.g., Mathsoft’s MathCad and Microsoft’s Excel,
respectively).

Utility calculation: Utility calculation software typically uses COTS spreadsheet applications as a foundation and
user developed algorithms or data structures to create simple software products. The utility calculation software
within the scope of this document is used frequently to perform calculations associated with the design of an SSC.
Utility software that has a high frequency of use may require the same software quality practices as custom software.

Commercial design and analysis tools: Design and analysis software can be proprietary or available for purchase.
Proprietary software is typically custom developed software generally not available to the public, but used by the
owner as part of a service. An example would be where DOE contracts for design services. The design service uses
their independently developed software (without DOE involvement or support). DOE then receives a completed
design. Purchased software is one that is available publicly and is generally procured directly from a vendor.
Procurement contracts can be enhanced to require details of the verification and validation performed on the
software product. DOE or its contractor in performing design and analysis activities then uses this software.
Examples include ANSYS and ABACUS.

Approaches to Grading Software Quality Practices

From the customer’s perspective, knowing the quality of the product being used provides a level of confidence in
that product. The quality can be specified and built into the product during the software development activities (from
concept to retirement). Confidence in the end product is determined by the verification and validation practices
performed throughout the software development lifecycle. Unfortunately a customer cannot always control building
quality into a product or participate in verification and validation activities performed during its development.

Therefore, confidence in the software must be determined by post-development assessment activities including
validating that the software performs its intended function(s). Basically, was the right system built?

The customer can assess the quality of the product or process through verifying that the vendor itself or a 3rd party
certifies that the software quality requirements were met. Or the customer may take a more active role in assessing
the quality of vendor’s development program by visiting the customer site to perform their own assessment. The
customer can also just accept the quality of the software based upon key characteristics of the software such as a
wide use across multiple applications.

These approaches are performed after the software is built. They cannot increase the quality of the software but only
assess the quality to gain a confidence that the software performs correctly and produces the correct results.
Customers or oversight organizations will typically use these approaches.

The various software quality assurance and assessment approaches that can be used for each type of software are
discussed below. Many of the approaches complement each other and one or two can be mutually exclusive. Table 2
maps the various types of software to the software quality assurance and assessment approaches. The table identifies
all approaches that could apply. Not all approaches would be appropriate to be performed in every case. However,
multiple approaches may be appropriate in some cases. This table is an example and is intended only for use in
understanding the issues that must be considered before developing any DOE requirements.

Type

Approach

Custom Configurable COTS Utility
Calculatio
n

Commercial
Design &
Analysis
Tool

Build quality into the product X
Perform model/algorithm validation X X X
Perform hand calculations X
Perform acceptance testing X X X X X
Perform assessment of vendor X X
Assess vendor certification X X
3rd party vendor certification X X X X
Accept the quality based upon key
characteristics

X X

Table 2. Approaches for Software Types

Building Quality into the Product: This approach applies only to custom software built by DOE, one of its
contractors or software vendor contracted for a custom product. It can only be applied during the building of the
software. It would not be appropriate for software purchased from others such as commercial-off-the-shelf or
Commercial Design and Analysis Tools software used by contractors for the design of a nuclear facility. This
approach would not be applicable for software versions already accepted into the Central Registry. This approach
can be used with any of the other approaches. However, if this approach is used, the other approaches may not need
to be applied at the same level of rigor as without implementing this approach.

To build quality into a safety software product, software engineering and software quality engineering practices are
used in a graded approach. These practices are based upon recognized industry standards and guidelines. Some of
these standards may include IEEE software engineering standard set, ASME NQA-1, ANS 10.4, DoD 882D, and
other government organization standards such as those of NASA and the FAA.

Depending upon the software’s impact on safety, the various recommended software engineering and quality
engineering practices, including safety analysis for the software and all levels of software testing, are performed to

the specified level of rigor for that grade. These practices are performed throughout the software life cycle from
concept to retirement. One such approach is a five level approach (A-E) and the software engineering practices
associated with these levels. The DOE approach that identifies the grading levels and the amount of rigor applied to
implement the software engineering and software quality engineering practices are being detailed and finalized.

Perform Model and Algorithm Validation: This approach applies to custom, commercial-off-the-shelf, and
Commercial Design and Analysis Tools software. A similar but less complex approach, hand calculations, can be
used for spreadsheet calculations. This approach is not applicable for configurable software. This approach can be
used with any of the other approaches. The drawback is the availability of a similar software product for comparison.
Design and analysis codes may provide the widest selection of similar codes that can be used for model and
algorithm comparisons.

The confidence level of the software can be determined through performing comparisons with the results of similar
software products. This is common when moving from one version of a software product to a newer one or from one
generation of a software product to its more advanced off-spring with increased capabilities. It is also very common
with accident analysis software to verify that the results from similar products produce similar outcomes.

Perform Hand Calculations: This approach applies only to utility calculation software. Although this approach is not
appropriate to validate the complete custom software product, hand calculations might be appropriate to validate the
algorithms and formulas within the components of the custom software. Other than the above-mentioned use for
custom software, this approach generally is not used with any other approach. Its real benefit (which can be
significant) applies to utility calculation software.

Many of the utility based calculations that are labeled as software, use functions and macros in commercial-off-the-
shelf products such as Microsoft’s Excel and Mathsoft’s MathCAD to assist in decisions related to safety. These
calculations are generally simple mathematical algorithms or formulas that can be validated using hand calculations.
For safety critical systems, formal mathematical proofs are often used to validate the correctness of the calculations
performed.

Perform Acceptance Testing or Qualification Testing: This approach can apply to all software types. The approach
is commonly used by customers to understand the quality of the software. The approach can be used by itself or to
compliment any of the other approaches. It can be one of the most costly in terms of manpower effort if exhaustive
testing is performed.

Operational testing may be part (and most likely should be) of the acceptance testing. But nothing precludes
acceptance testing being done in a non-operating environment. Acceptance testing would include functional testing,
performance testing, security testing, stress testing, and load testing.

Generally the only testing level that is performed here is the system level testing. Where possible when a new version
of a software product is obtained, the site should perform predetermined and ad-hoc test cases and procedures to
validate that the system meets the requirements and does not perform any unintended functions. If the system is
operational, only positive testing may be possible. Users’ guides and operational profiles are instrumental in
identifying and detailing the positive test cases and procedures. Failure mode analysis can be used for defining
negative test cases and procedures.

However, in many instances negative or off-normal testing is not possible. Performing negative tests in an
operational or nearly operational system has the potential to cause unexpected defects that place the system in an
unsafe state or cause harm to equipment. Because of the potential for a hazard being exposed, negative testing works
best for new systems that have not been placed into operations.

Perform Assessment of Vendor: The assessment of the supplier is probably the most rigorous and complete of the
assessing quality approaches. It is basically an assessment of how the quality was built in by the vendor. While
acceptance testing focuses on the quality of the software product, vendor assessment focuses on the quality of the
software development process. It can be more than a document review. Interviews with key vendor staff supplement

the documentation produced from the development process. Observation or witness testing during the development
testing activities can be key elements in this type of assessment.

This approach can apply to custom and commercial design and analysis tools software.

This approach is best performed through document reviews, interviews of vendor staff, and witness testing.
However, any one of these can be done separately but most likely producing less confidence in the quality of the
software than if two or more aspects were performed. This approach would not be applicable if the Building Quality
into the Product, Assess Vendor Certification, Third Party Vendor Certification, or Accepting the Quality Based
Upon Key Characteristics approaches are performed. However it can be used in conjunction with the Perform Model
and Algorithm Validation and the Perform Acceptance Testing or Qualification Testing approaches.

Assess Vendor Certification: This approach requires vendor procurement contracts to include the quality standards
and quality requirements the vendor must meet and for the vendor to certify they have met those requirements. The
review of the vendor certification prior to use of the software would be all that is needed.

This is a simple assessment approach that applies to custom, configurable, commercial-off-the-shelf, and commercial
design and analysis tools software.

Most likely this approach is mutually exclusive from the more active Perform Assessment of Vendor and Third Party
Vendor Certification approaches. This approach can complement the Perform Model and Algorithm Validation,
Perform Acceptance Testing or Qualification Testing, and the Accept the Quality Based Upon Key Characteristics
approaches.

Third Party Vendor Certification: This approach allows for an independent party (neither the user nor the vendor) to
assess the vendor against national standards criteria. These third party certifications can be for the quality
management systems (QMS) such as ISO 9001, the software process such as SEI CMM, or product safety
certification such as UL. The user/purchaser may use the certification to confirm that the vendor has applied the
subject standards. The user/purchaser may specify certification by a third party in procurement documents when
valid for this application of the software.

This approach may apply to custom, configurable, commercial-off-the-shelf, and commercial design and analysis
tools software.

If this approach is used, Building Quality into the Product, Third Party Vendor Certification and Assess Vendor
Certification approaches are not needed. When this Third Party Vendor Certification is used, Perform Model and
Algorithm Validation, Perform Acceptance Testing or Qualification Testing, and the Accept the Quality Based Upon
Key Characteristics approaches can be used to supplement this approach.

Accept the Quality Based Upon Key Characteristics: Just accepting the quality may seem like giving up on quality
but there are certain circumstances where applying this approach is appropriate. Basically key characteristics for the
vendor and/or product define the quality of the software such as wide spread application or a large customer base.

Software that is widely used (i.e., key characteristic) has a large user base that tends to promote proper correction of
major defects and sharing of information to work around existing defects that have significant consequences. Thus
the quality of the software can be indirectly derived or assumed to be at a certain acceptable level. Types of software
in this area include the proprietary safety design codes and calculational software such as Excel.

This approach applies to commercial-off-the-shelf and commercial design and analysis tools software. It is not
applicable for custom software. This approach is the foundation for accepting the quality levels for many software
products and tools used in the development and operation of software systems. It provides the confidence level when
using compilers, operating systems, code generators, and other software development tools.

Software Quality and Assessment Practices

Each of the approaches described include specific practices that can be performed to achieve the desired level of
quality. The rigor of implementing these practices should be based upon the grade (level) of the software as referred
to in the System Classification and Software Grading Levels section of this document. Table 3 is a sample template
for mapping the practices to the software grade. This table or one similar is completed for each of the software types
(i.e., custom, configurable, COTS, utility calculations, and commercial design and analysis tools). Level n is used in
the event that software that is important to safety, which does not fit the level A or B criteria, is to be considered in
the development of the DOE Order and guides.

The grouping and list of practices are derived from industry recognized standards and concepts. These include
ASME NQA-1, IEEE 12207, NASA 8719.13B, ASQ SQE BOK, SEI CMM, and USAF Software Technology
Support Center.

Level A Level B Level n
Cross Life Cycle Practices
Software Safety Analysis
Software Risk Analysis
Software Quality Assurance
Software Reviews and Audits
Software Project Planning
Software Configuration Management
Problem Reporting and Corrective
Actions
Measurements and Metrics
Procurements & Vendor Management
Vendor Assessments
Vendor Certifications
3rd Party Certifications
Accept Based Upon Key Characteristics
Training
Life Cycle Practices
Software Concept
Software Requirements Analysis and
Management
Software Design
Software Implementation
Software Testing
Developer Testing
Acceptance Testing
Model/Algo Validation
Hand Calculations
Software Product Build and Product
Release
Software Product Installation &
Verification
Software Operations
Software Maintenance Activities
Software Retirement

Table 3. Sample Template of Practices

Conclusion

DOE is committed to operating high quality safety systems in its nuclear facilities. DOE strives to utilize appropriate
industry standards for safety software quality and assessment practices rather than developing DOE specific
practices. DOE’s directive process will result in the generation of a Guide that will incorporate the template from
Table 3 with recommended practices for each type of software application and each defined level. The DOE
directives, an Order and a Guide, are to be completed by early 2005. The approaches described in this paper will be
used to detail and finalize these directives.

References

1. Alain Abran and James W. Moore, Executive Editors. Guide to the Software Engineering Body of
Knowledge. Trial Version. Los Alamitos, CA: IEEE Computer Society, May 2001.

2. ASME NQA-1-2000, Quality Assurance Requirements for Nuclear Facility Applications.
3. DoD 882D-2000, Department of Defense Standard Practice for System Safety, February 10, 2000.
4. DOE-STD-3009-94, Change Notice No. 2, DOE Standard, Preparation Guide for U.S. Department of

Energy Nonreactor Nuclear Facility Documented Safety Analyses, April 2002.
5. DOE/RW AP-S1.1Q Revision 5 ICN 1, DOE Office of Civilian Radioactive Waste Management, QA

Software Management.
6. DOE/RW-0333P, DOE Office of Civilian Radioactive Waste Management, Quality Assurance

Requirements and Description.
7. IEEE/EIA 12207-1997, Standard for Information Technology, Software life cycle processes –

Implementation considerations, April 1998.
8. NASA GB 8719.13B (Draft), NASA Software Safety Guidebook (Draft), February 2002.
9. NASA Std 8719.13B (Draft), Software Safety Standard, NASA Technical Standard (Draft), May 22, 2003.
10. WSRC 20-1 Rev 8, Westinghouse Savannah River Company, Software Quality Assurance, October 16,

2003.

Biography

Richard Lagdon, Director, Quality Assurance Programs, Office of Environment Safety and Health, US Department
of Energy, 1000 Independence Avenue SW, Washington, DC 20585-0270, USA, telephone – (301) 903-4218,
facsimile – (301) 903-4210, e-mail – chip.lagdon@eh.doe.gov. Richard Lagdon has extensive experience in nuclear
facility operation, safety and engineering.

Debra Sparkman, Software Quality Engineer, Center for Application Development and Software Engineering,
Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA, telephone – (301) 903-
6888, facsimile (301) 903-4210, e-mail – sparkman1@llnl.gov. Debra Sparkman is an ASQ certified software
quality engineer, has extensive experience in scientific research, control systems, and database applications
development and high integrity systems standards.

labass1
Text Box
This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

